Hilbert’s Paradox*

Volker Peckhausfand Reinhard Kahle!

Abstract

In diesem Aufsatz wird erstmals die Hilbertsche Antinomie vollstandig
publiziert. David Hilbert hat sie wahrend seiner Auseinandersetzun-
gen mit der Cantorschen Mengenlehre gefunden. Seinen Angaben zu-
folge wurde Ernst Zermelo durch sie zu seiner Version der Zermelo-
Russellschen Antinomie angeregt. Es handelt sich um die Antinomie
der Menge aller durch Addition (Vereinigung) und Selbstbelegung er-
zeugbaren Mengen. Sie dhnelt der Cantorschen Antinomie der Menge
aller Kardinalzahlen, ist aber, so Hilbert, “rein mathematisch”, da in
ihr ein offensichtlicher Bezug zur Cantorschen Kardinal- und Ordinal-
zahlarithmetik vermieden wird.

In this paper Hilbert’s paradox is for the first time published com-
pletely. It was discovered by David Hilbert while struggling with Can-
tor’s set theory. According to Hilbert, it initiated Ernst Zermelo’s
version of the Zermelo-Russell paradox. It is the paradox of all sets
derived from addition (union) and self-mapping. It is similar to Can-
tor’s paradox of the set of all cardinals, but, following Hilbert, of
“purely mathematical nature”, because an open reference to Cantor’s
cardinal and ordinal arithmetic is avoided.
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1 Introduction

In 1903 Gottlob Frege published the second volume of his Grundgesetze der
Arithmetik [Frege 1903] containing the admission that the logical system
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used there for the foundation of arithmetic had proved to be inconsistent.
He sent a copy of this volume to David Hilbert, who thanked him in a letter
dated 7 November 1903. In this letter Hilbert referred to Frege’s description
of Russell’s paradox in the postscript, and wrote that “this example” was
already known in Gottingen. In a footnote he added “I believe Dr Zermelo
discovered it three or four years ago after I had communicated my examples
to him” and continued

I found other even more convincing contradictions as long as four or
five years ago; they led me to the conviction that traditional logic
is inadequate and that the theory of concept formation needs to be
sharpened and refined.!

Hence, Hilbert maintained that he had formulated logical paradoxes around
1898 or 1899 which he communicated to Zermelo, thereby initiating Zermelo’s
independent discovery of Russell’s paradox which took place around 1899 or
1900.

Zermelo’s part in this story is well-known, Hilbert’s role, however, remains
almost completely obscure. Hilbert never published a new paradox. There is
no paradox associated to Hilbert in standard catalogues of paradoxes. What
could it be? What could be more convincing than Russell’s paradox?

In this paper we present a candidate for Hilbert’s paradox. In the first
part we give evidence for our suggestion and provide the historical context. In
the second part Hilbert’s paradox is described and its systematic significance
is discussed.

Throughout the paper we use the term “paradox”, bearing in mind, how-
ever, that as early as 1907 Ernst Zermelo had suggested to use “antinomy”
instead. After having read the proof sheets of the paper “Bemerkungen zu
den Paradoxieen von Russell und Burali-Forti” co-authored by his student
Kurt Grelling and his philosophical colleague in Gottingen Leonard Nelson
[Grelling/Nelson 1908], he criticized in a comment to Nelson the use of the
term “paradox”, “antinomy” being much more precise. “Paradox” means,
he wrote, “a statement contradicting the common opinion, it doesn’t contain
anything of an inner contradiction (as is the case for the paradoxes of Russell
and Burali-Forti, and expressed by the term “antinomy”).?

HFrege 1980, p. 51]. German original [Frege 1976, pp. 79-80].

2Zermelo’s postcard to Leonard Nelson, Glion (Switzerland), no date (postmark 22
December 1907): “Wollen Sie nicht auch lieber ‘Antinomie’ sagen, statt ‘Paradoxie’, da
der erstere Ausdruck sehr viel praziser ist.” A month later Zermelo wrote to Nelson in a
postcard, Glion, no date (postmark 20 January 1908): “Das Wort ‘Paradoxie’ scheint mir
von Hessenberg [Gerhard Hessenberg, co-editor of the new series of the Abhandlungen der
Fries’schen Schule, where the joint paper was published] weil es eben etwas ganz anderes
bedeutet, ndmlich eine Aussage, welche der herkémmlichen Meinung widerstreitet; von
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2 Historical Context

2.1 Zermelo’s Paradox

We turn to Zermelo’s part in this story. Zermelo came to Gottingen in 1897
in order to work for his Habilitation. His special fields of competence were the
calculus of variations and mathematical physics, such as thermodynamics and
hydrodynamics.® Under the influence of Hilbert he changed his focus of inter-
ests to set theory and foundations. He became Hilbert’s collaborator in the
foundations of mathematics, a first member of Hilbert’s school before it was
even established. Zermelo’s first set-theoretical publication on the addition
of transfinite cardinals dates from 1902 [Zermelo 1902], but as early as the
winter term 1900/1901 he gave a lecture course on set theory in Gottingen.
It is possible that he found the paradox while preparing this course. He re-
ferred to it in the famous polemical paper “A New Proof of the Possibility
of a Well-Ordering” of 1908 [Zermelo 1908a]. There Zermelo noted that he
had found the paradox independently of Russell, and that he had mentioned
it to Hilbert and other people already before 1903, the year when it was first
published by Frege and Russell ([Frege 1903], [Russell 1903]). And indeed,
among the papers of Edmund Husserl, until 1916 professor of philosophy in
Gottingen, a note in Husserl’s hand was found, partially written in Gabels-
berger shorthand, saying that Zermelo had informed him on 16 April 1902
that the assumption of a set M that contains all of its subsets m, m/, ...
as elements, is an inconsistent set, i.e., a set which, if treated as a set at
all, leads to contradictions.* Zermelo’s message was a comment on a review
that Husserl had written on the first volume of Ernst Schroder’s Vorlesungen
tber die Algebra der Logik [Schroder 1890]. Schroder had criticized George
Boole’s interpretation of the symbol 1 as the class of everything that can be a
subject of discourse (the universe of discourse, universal class).’ Husserl had
dismissed Schroder’s argumentation as sophistical [Husserl 1891, p. 272}, and
was now advised by Zermelo that Schroder was right concerning the matter,

einem inneren Widerspruch enthélt es gar nichts,” Archiv der sozialen Demokratie, Bonn,
Nelson papers.

30n Zermelo’s activities in Gottingen cf. esp. [Moore 1982], [Peckhaus 1990a, pp. 76—
122], [Peckhaus 1990b].

4Critical edition in Husserliana XXII [Husserl 1979, p. 399]: “Zermelo teilt mit (16.
April 1902) [...] Eine Menge M, welche jede ihrer Teilmengen m, m’ ...als Element
enthélt, ist eine inkonsistente Menge, d.h. eine solche Menge, wenn sie iiberhaupt als
Menge behandelt wird, fiihrt zu Widerspriichen.” English translation in [Rang/Thomas
1981].

5[Schréder 1890, p. 245): “Es [ist] in der That unzuliissig [...], unter 1 eine so um-
fassende, sozusagen ganz offene Klasse, wie das oben geschilderte ‘Universum des Diskus-
sionsfahigen’ (von Boole) zu verstehen.” Schroder referred to Boole’s definition of the
universe of discourse and his interpretation of the symbol 1, cf. [Boole 1854, pp. 42-43].
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but not in his proof.

The document from the Husserl papers provides convincing evidence for
Hilbert’s assertion concerning Zermelo. It is furthermore confirmed by Zer-
melo’s own recollections. In 1936, Heinrich Scholz was working on the papers
of Gottlob Frege which he had acquired for his department at the University
of Miinster. He had found Hilbert’s letter to Frege, mentioned above, and
now asked Zermelo what paradoxes Hilbert referred to in this letter.® Zer-
melo answered that the set-theoretic paradoxes were often discussed in the
Hilbert circle around 1900, and he himself had given at that time a precise
formulation of the paradox which was later named after Russell.”

2.2 Traces of Hilbert’s Paradox

But what about Hilbert’s own paradox? It left some traces in history. The
most prominent one is Otto Blumenthal’s hint in his biography of Hilbert
published in the third volume of Hilbert’s Collected Works [Blumenthal
1935]. There Blumenthal mentions the paradoxes of set theory and relates
them to the second of Hilbert’s problems presented in the famous Paris prob-
lems lecture in 1900 [Hilbert 1900a], i.e., the problem of proving the consis-
tency of the axioms of arithmetic. According to Blumenthal the paradoxes
showed that certain operations with the infinite, which everyone thought to
be allowed, led unquestionably to contradictions. Blumenthal reports that
Hilbert convinced himself of this fact by constructing the example of an in-
consistent set of all sets resulting from union and self-mapping, i.e., purely
mathematical operations [Blumenthal 1935, pp. 421-422].

Another trace can be found in the year 1907. The Go&ttingen philoso-
pher Leonard Nelson and the student of mathematics and philosophy Kurt
Grelling were working on one of the first philosophical papers to discuss the
paradoxes, here especially the ones of Russell and Burali-Forti [Grelling/Nel-
son 1908]. The joint paper contained a general formulation suitable for several
paradoxes, among them the semantical “heterological paradox” or “Grelling’s
paradox” (cf. [Peckhaus 1990a, pp. 168-195], [Peckhaus 1995]). From a letter
of the Gottingen mathematician Ernst Hellinger to Leonard Nelson, dated 28
December 1907,® we learn that Hellinger had read a manuscript version of the

SHeinrich Scholz to Zermelo, dated Miinster, 5 April 1936, University Archive Freiburg
i. Br., Zermelo papers, C 129/106.

"Zermelo to Scholz, dated Freiburg i.Br., 10 April 1936, Institut fiir mathematische
Logik und Grundlagenforschung, Miinster, Scholz papers: “Uber die mengentheoretischen
Antinomien wurde um 1900 herum im Hilbert’schen Kreise viel diskutiert, und damals
habe ich auch der Antinomie von der grofiten Méachtigkeit die spater nach Russell benannte
préizise Form (von der ‘Menge aller Mengen, die sich nicht selbst enthalten’) gegeben. Beim
Erscheinen des Russellschen Werkes |...] war uns das schon gelaufig.”

8Hellinger to Nelson, dated Breslau, 28 December 1907, Archiv der sozialen Demokratie,
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paper. He suggested to add a note on Hilbert’s paradox, because its appear-
ance was more mathematical and perhaps more suitable for mathematicians
not working in set theory. In the end Hilbert’s paradox was not included, be-
cause Grelling failed to reduce it to the general formulation. Nevertheless we
can state that, at least in Gottingen, Hilbert’s paradox was generally known
in that time.

2.3 Hilbert and Cantor

Given the time period referred to by Hilbert, it can be assumed that Hilbert
formulated the paradox during his discussions with Georg Cantor, docu-
mented in their correspondence between 1897 and 1900.° The main topics
were Cantor’s problems with the assumption of a set of all cardinals. Already
in the first of Cantor’s letters to Hilbert, dated 26 September 1897 [Cantor
1991, no. 156, pp. 388-389], Cantor proves that the totality of alephs does not
exist, i.e., that this totality is not a well-defined, finished set [fertige Menge].
If it is taken to be a finished set, a certain larger aleph would follow on this
totality. So this new aleph would at the same time belong to the totality
of all alephs, and not belong to it, because of being larger than all alephs
(ibid., p. 388). Cantor consequently distinguished sets from other kinds of
multiplicities, i.e., “finished” sets from multiplicities which are not sets, like
the totality of all cardinals. The latter multiplicities are “absolutely infinite”,
unlike the former ones, the “transfinite” sets. In a later letter Cantor gave the
following characterization of a finished set: A set can be imagined as finished
if it is consistently possible to imagine all of its elements as being gathered,
the set itself therefore as one compound thing;, i. e., if it is possible to imagine
the totality of its elements as existing.!? This is, however, impossible for the
absolute infinite which he identifies with God. The absolute infinite doesn’t
allow any determination [Cantor 1883, p. 556]. Realized in its highest per-
fection in God it has to be strictly opposed to the actual infinite which he
calls the transfinite [Cantor 1887, pp. 81-82].

It is well-known that Cantor later changed his terminology. In May 1899

Bonn, Nelson papers: “Es wire vielleicht nicht unzweckméflig, es [Hilbert’s paradox| zu
erwahnen, da es mathematischer aussieht als die andern, und vielleicht auch dem nicht-
mengentheoretischen Mathematiker sympathischer aussieht, als das W-Paradoxon [i. e.,
Burali-Forti’s paradox of the set W of all ordinals].”

9For a comprehensive discussion of this correspondence cf. [Purkert /Tlgauds 1987, 147—
166]. Extracts are published in [Cantor 1991]. For Cantor’s reaction to the paradox see
also [Ferreirés 1999, 290-296].

10Cantor’s letter to Hilbert, dated 2 October 1897 [Cantor 1991, p. 390], also published in
[Purkert/Tlgauds 1987, no. 44, pp. 226-227]. A similar definition can be found in Cantor’s
letter to Hilbert, Halle, 10 October 1898 [Cantor 1991, no. 158, 396-397, definition on p.
396].
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he wrote to Hilbert that he had become accustomed to replace what he
formerly had called “finished” by the expression “consistent”. The notion
“sets” stood now for “consistent multiplicities”.!?

Cantor disproves the existence of the totality of all cardinals by show-
ing that the assumption of its existence contradicts his definition of a set
as a comprehension of certain well distinguished objects of our intuition or
our thinking in a whole.!? The totality of all cardinals (and of all ordinals)
cannot be thought of as one such thing, contrary to actual infinite objects
like transfinite sets. He is therefore not really concerned with paradoxes and
their solution, but with non-existence proofs using reductio-ad-absurdum ar-
guments. '3

From these passages we learn that Hilbert was concerned with what was
later called “Cantor’s paradox”, i.e., the paradox of the greatest cardinal,
or of the set of all cardinals. It is clear, however, that the contradiction dis-
cussed by Cantor served only as a paradigmatic example for other inconsis-
tent multiplicities, i. e., totalities resulting from unrestricted comprehension.
Nevertheless, there is no evidence that Cantor and Hilbert discussed the con-
tradiction resulting from the assumption of a greatest ordinal, today known
as “Burali-Forti’s paradox”, although this has been claimed by several au-
thors.'* Usually Cantor’s letter to Philip E. B. Jourdain of 4 November 1903
is taken as evidence for Cantor having known the paradox of the greatest
ordinal before its publication by Cesare Burali-Forti [Burali-Forti 1897], and
that he had communicated this paradox to Hilbert as early as 1896.1° In fact
Cantor showed in this letter to Jourdain that the assumption of a system of
all ordinals leads to a contradiction. In his communication with Hilbert of
9 May 1899, however, he only referred to the assumption of a greatest car-
dinal.'® Purkert and Ilgauds made it furthermore plausible [Purkert/Tlgauds

HCantor’s letter to Hilbert, Halle, 9 May 1899 [Cantor 1991, no. 160, p. 399].

12[Cantor 1895/97], quoted in [Cantor 1932, p. 282]: “Unter einer ‘Menge’ verstehen
wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unsrer
Anschauung oder unseres Denkens (welche die ‘Elemente’ von M genannt werden) zu
einem Ganzen.”

13We follow in this evaluation [Moore/Garciadiego 1981], [Garciadiego Dantan 1992].

14E. g., [Fraenkel 1930, pp. 261], [Meschkowski 1983, p. 144].

15The letter was quoted by Jourdain [Jourdain 1904] and mentioned by Felix Bernstein
[Bernstein 1905, 187]. Gerhard Hessenberg referred to Bernstein when maintaining Can-
tor’s priority [Hessenberg 1906, § 98, p. 631]. From there it became standard folklore. Cf.
[Grattan-Guinness 2000, pp. 117-119].

6 Cantor’s letter to Philip E. B. Jourdain, dated Halle 4 November 1903 [Cantor 1991,
no. 172, pp. 433-434, quote p. 433]: “Den unzweifelhaft richtigen Satz, dafl es auler den
Alephs keine anderen transfiniten Cardinalzahlen giebt, habe ich vor tiber 20 Jahren (bei
der Entdeckung der Alephs selbst) intuitiv erkannt. [...] Schon vor 7 Jahren machte ich
Herrn Hilbert, vor 4 Jahren Herrn Dedekind darauf beziigliche briefliche Mitteilung.” The
extensive correspondence between Cantor and Jourdain is published in [Grattan-Guinness
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1987, p. 151] that Cantor’s recollections were erroneous. He most probably
referred to his letter to Hilbert of 26 September 1897, mentioned above. The
notion of the greatest ordinal was also the topic of a letter Cantor wrote
to Dedekind on 3 August 1899. There he proved that the system 2 of all
numbers is an inconsistent, absolutely infinite multiplicity.!” In this letter
Cantor also referred to the totality of everything imaginable (“Inbegriff alles
Denkbaren”), i.e., Dedekind’s own assumption in Was sind und was sollen
die Zahlen? [Dedekind 1888], needed to prove that there are infinite sys-
tems (sets).!® Cantor showed that his non-existence proofs also hold with
this assumption.

Hilbert’s responses in correspondence have not been preserved,!® but he
published his opinion at prominent places. In the paper “On the Concept of
Number” from 1900 [Hilbert 1900b], Hilbert’s first paper on the foundations
of arithmetic, he gave a set of axioms for arithmetic, and claimed that only
a suitable modification of known methods of inference would be needed for
proving the consistency of the axioms. If this proof were successful, the ex-
istence of the totality of real numbers would be shown at the same time. In
this context he referred to Cantor’s problem of whether the system of real
numbers is a consistent, or finished, set. He stressed:

Under the conception above, the doubts which have been raised against
the existence of the totality of all real numbers (and against the ex-
istence of infinite sets in general) lose all justification; for by the set
of real numbers we do not have to imagine the totality of all possible
laws according to which the elements of a fundamental sequence can
proceed, but rather—as just described—a system of things whose in-
ternal relations are given by a finite and closed set of axioms |[...],
and about which new statements are valid only if one can derive them
from the axioms by means of a finite number of logical inferences.?°

He also claimed that the existence of the totality of all powers or of all
Cantorian alephs could be disproved, i.e., in Cantor’s terminology, that the
system of all powers is an inconsistent (not finished) set (ibid.).

1972-73].

17Cantor to Dedekind, dated Halle, 3 August 1899, [Cantor 1991, no. 163, pp. 407-411].
It is one of the best known of Cantor’s letters, published already in Zermelo’s edition of
Cantor’s collected works [Cantor 1932, pp. 443-447]. Ivor Grattan-Guinness has shown,
however, that Zermelo combined this letter with the one of 28 July 1899 and even changed
the original wording at some places [Grattan-Guinness 1974-75]. The correct text of the
letter of 28 July 1899 is found in [Cantor 1991, no. 162, p. 405].

8Dedekind 1888, p. 14]: “Meine Gedankenwelt, d.h. die Gesamtheit S aller Dinge,
welche Gegenstand meines Denkens sein kénnen, ist unendlich.”

9Tn his letter to Hilbert of 2 October 1897 Cantor referred to some of Hilbert’s objec-
tions, quoted in [Purkert/Ilgauds 1987, pp. 226-227].

20[Hilbert 1996b, p. 1095]. German original [Hilbert 1900b, p. 184].
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Hilbert took up this topic again in his famous Paris lecture on “Mathe-
matical Problems”.?! In the context of his commentary on the second problem
concerning the consistency of the arithmetical axioms he used the same exam-
ples from Cantorian set theory and the continuum problem as in the earlier
lecture. “If contradictory attributes be assigned to a concept,” he wrote, “I
say, that mathematically the concept does not exist” [Hilbert 1996a, p. 1105].

According to Hilbert a suitable axiomatization would be able to avoid the
contradictions resulting from the attempt to comprehend absolute infinite
multiplicities as units, because only those concepts had to be accepted which
could be derived from an axiomatic base.

2.4 The 1905 lecture

Although it is evident that Hilbert was at that time deeply concerned with
the problems of set theory, we have found no direct evidence that Hilbert
had formulated contradictions in this context, or even a paradox of his own.
Indirect evidence can be found, however, in documents dating from a few
years later.

Only after the publication of the paradoxes by Russell and Frege, and
especially through Frege’s reaction, the logical significance of this kind of
contradiction became evident.?? Now mathematicians understood that these
paradoxes were not the simple contradictions that they were familiar with in
their everyday reductio ad absurdum arguments. As logical paradoxes they
seriously affected Hilbert’s axiomatic programme, especially the proposed
consistency proof for arithmetic. It is a matter of course that a consistency
proof, based on a logic proved to be inconsistent, could not be given. Hilbert
first expressed this new insight in a talk delivered at the Third International
Congress of Mathematicians in Heidelberg in August 1904 [Hilbert 1905c¢].
In this lecture “On the Foundations of Logic and Arithmetic” he demanded
a “partly simultaneous development of the laws of logic and arithmetic”
[Hilbert 1905¢, p. 176]. According to Blumenthal [Blumenthal 1935, p. 422],
this lecture remained completely misunderstood and several of Hilbert’s ideas
proved to be defective. Nevertheless it was the first step in the construction
of a foundational system of mathematics avoiding the paradoxes.

The next step was taken in a lecture course on the “Logical Principles
of Mathematical Thinking” which Hilbert gave in Gottingen in the summer
term of 1905. Two sets of notes of this lecture course were preserved. The
“official” notes are from Ernst Hellinger, then a student of mathematics.
They contain marginal notes in Hilbert’s hand [Hilbert 1905a]. Another set

21[Hilbert 1900a], English translations [Hilbert 1902], [Hilbert 1996a].
22(Cf. [Moore 1978], [Moore 1980, pp. 104-105], [Moore/Garciadiego 1981], [Garciadiego
Dantan 1992].
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was produced by the student of mathematics and physics Max Born [Hilbert
1905b]. Part B of these notes, on “The Logical Foundations”, starts with
a comprehensive discussion of the paradoxes of set theory. It begins with
metaphorical considerations on the general development of science:

It was, indeed, usual practice in the historical development of science
that we began cultivating a discipline without many scruples, pressing
onwards as far as possible, that we thereby, however, then ran into dif-
ficulties (often only after a long time) that forced us to turn back and
reflect on the foundations of the discipline. The house of knowledge is
not erected like a dwelling where the foundation is first well laid-out
before the erection of the living quarters begins. Science prefers to
obtain comfortable rooms as quickly as possible in which it can rule,
and only subsequently, when it becomes clear that, here and there, the
loosely joined foundations are unable to support the completion of the
rooms, science proceeds in propping up and securing them. This is no
shortcoming but rather a correct and healthy development.??

Although contradictions are quite common in science, Hilbert continued, in
the case of set theory they seem to be different, because there they have a
tendency towards the side of theoretical philosophy. In set theory the common
Aristotelian logic and its standard methods of concept formation were used
without hesitation. And these standard tools of purely logical operations,
especially the subsumption of concepts under a general concept, proved to
be responsible for the new contradictions.

Hilbert elucidated these considerations by presenting three examples. The
first paradox discussed is the Liar paradox. The third one is “Zermelo’s para-
dox,” as the Russell-Zermelo paradox was called in Gottingen at that time.
Hilbert described this paradox as purely logical, assuming that it might be
more convincing for non-mathematicians. He stressed, however, that it was
derived from his own paradox, the second one in his list of examples, and this
second paradox was, according to Hilbert, of purely mathematical nature.?*
Hilbert expressed his opinion that this paradox

appears to be especially important; when I found it, I thought in
the beginning that it causes invincible problems for set theory that
would finally lead to the latter’s eventual failure; now I firmly believe,
however, that everything essential can be kept after a revision of the
foundations, as always in science up to now. I have not published this

Z3[Hilbert 1905b, p. 122], published in [Peckhaus 1990, p. 51].

24[Hilbert 1905a, p. 210]: “Als drittes Beispiel dieser Widerspriiche stelle ich neben
diesen meinen rein mathematischen noch einen rein logischen, den Dr. Zermelo aus jenem
herausgezogen hat [...].”
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contradiction, but it is known to set theorists, especially to G. Can-
tor.2®

This paradox, arising from uniting sets and mapping them to themselves, is
exactly the one Blumenthal referred to in his biography. It is most likely the
one Hilbert himself referred to in his letter to Frege.

3 Hilbert’s Paradox

3.1 Hilbert’s Presentation

The full text of Hilbert’s paradox is given in the appendices, both in English
translation (appendix I) and in the German original (appendix II). Here, we
reconstruct the main steps of Hilbert’s argument.

The paradox is based on a special notion of set which Hilbert introduces
by means of two set formation principles starting from the natural numbers.
The first principle is the addition principle. In analogy to the finite case,
Hilbert argued that the principle can be used for uniting two sets together
“Into a new conceptual unit [...], a new set that contains each element of
either sets.” This operation can be extended: “In the same way, we are able
to unite several sets and even infinitely many into a union.” The second
principle is called the mapping principle. Given a set M, he introduces the
set MM of self-mappings of M to itself.26 A self-mapping is just a total
function which maps the elements of M to elements of M.%7

Now, he considers all sets which result from the natural numbers “by
applying the operations of addition and self-mapping an arbitrary number of
times.” By use of the addition principle which allows to build the union of
arbitrary sets one can “unite them all into a sum set & which is well-defined.”
In the next step the mapping principle is applied to U, and we get F = U" as
the set of all self-mappings of . Since F was built from the natural numbers
by using the two principles only, Hilbert concludes that it has to be contained
in U. From this fact he derives a contradiction.

Since “there are ‘not more’ elements” in F than in U there is an assign-
ment of the elements u; of U to elements f; of F such that all elements of
fi are used. Now one can define a self-mapping g of & which differs from all

Z5[Hilbert 1905a, p. 204], published in [Peckhaus 1990, p. 52].

26Hilbert used the German term “Selbstbelegung” which is translated here by “self-
mapping”. The term “Belegung” was already used by Cantor [Cantor 1895/97, § 4, p. 486
(1895)], cf. also [Cantor 1932, p. 287]. In his edition of Georg Cantor’s collected works
Zermelo explained Belegung as a function with explicitly given domain and (potential)
range [Cantor 1932, footnote [3], p. 352].

2TIn classical logic, M™ is isomorphic to 2, and the set of all mappings from M to
{0, 1} is isomorphic to P(M), the power set of M.
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fi- Thus, g is not contained in F. Since F was assumed to contain all self-
mappings we have a contradiction. In order to define g Hilbert used Cantor’s
diagonalization method. If f; is a mapping u; to f;(u;) = u 50 he chooses an
element Ug(i) different from w POIE the image of u; under g. Thus, we have

g(ui) = uym # u 59 and g “is distinct from any mapping fr of F in at least

one assignment.” %

Hilbert finishes his argument with the following observation:

We could also formulate this contradiction so that, according to the
last consideration, the set U" is always bigger [of greater cardinality]?”
than U but, according to the former, is an element of i.

3.2 Brief Reconstruction

In order to make the argument more comprehensible, the paradox can be
presented in the following way. First we define a notion of set:

Definition 1 We define inductively:

1. The natural numbers as a whole are a set.>°

2. Addition principle: If we have an arbitrary, possibly infinite collection
of sets, the union of all these sets is a set.

3. Mapping principle: The totality of all total functions from a given set
into itself is a set.

Now we take the closure of all sets introduced according to the following
definition (this union is well defined according to the addition principle):

Definition 2 Let U be the union of all sets defined according to definition
1.

Now we can apply the mapping principle to it.
Definition 3 Let F be the set UY.

Obviously F is built according to our definition of sets. We have used the
addition principle to define 4 and then the mapping principle to define F.
But that means, F has to be contained in U because U was the union of all
sets built according to the definition of sets. Thus, we get the following

*SHilbert’s notation ) is somewhat clumsy. In fact, it is enough to say that g(u;) = v;
for an element v; of U with v; # f;(u;).

29Remark later added in Hilbert’s hand in Hellinger’s lecture notes.

30Hilbert even argues that the natural numbers can be defined from finite sets using the
addition principle.
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Lemma 4 F C U.

From this lemma it follows that there exists a function of ¢ in F whose range
is the whole set F. Therefore, we can apply Cantor’s diagonalization method
to define a function from U to U which is distinct from each element of F.

Proposition 5 There exists a total function g fromU to U such that g € F.

But by definition of F, this set contains all total function from U to U. Thus,
we get as a

Corollary 6 The system of sets defined by 1 is contradictory.

3.3 Analysis of the Paradox

The reconstruction given above reveals the source of the paradox. Obviously
the addition principle is too vague. Hilbert allows “to unite several sets and
even infinitely many into a union,” he even allows to “unite them all,” i.e., all
sets defined by addition and self-mapping. He does not determine, however,
the domain of the universal quantifier. The definition of the set U is, thus,
based on an impredicative construction, because U itself has to belong to
this domain. In short: The definition of U depends on a totality containing
U itself.

These problems can be overcome by restricting the addition principle. It
has to be demanded that the sets united have to be elements of another set
already established. And this is, in fact, the way in which Zermelo proceeded
in his axiomatization of set theory. This axiomatic system, refined by Fraenkel
and Skolem and called ZFC, is still today generally accepted as the basis of
mathematics. In ZFC we have a union axiom corresponding to the addition
principle. But in contrast to the addition principle, a family of sets T being
itself a set is demanded which can be regarded as an index set giving some
control over the sets gathered in the union [Zermelo 1908b, 265]. Nowadays,
the union axiom is stated as:

VI3SVx(z € S« JU(x e UNU €T))

Fraenkel correctly saw that an unrestricted union axiom within axiomatized
set theory led to the same problems as the ones connected with Russell’s
paradox. He saw the reason for these problems in an unconcerned use of the
notion “arbitrarily many.” Fraenkel referred directly to the union axiom, so
his analysis reads like a diagnosis of the cause of Hilbert’s paradox.3!

31[Fraenkel 1927, p. 71]: “Will man [...] zu etwas allgemeineren Prozessen [of set for-
mation] fortschreiten, so mufl man [...] auch die Zusammenfassung der Elemente ver-
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Although Hilbert worked only in a restricted domain of sets, containing
only those sets formed by addition and self-mapping, his addition principle
was itself too vague, so that it resulted in effects similar to those of Cantor’s
comprehension.?? From another perspective the lack of a proper quantifica-
tion theory is conspicuous. Hilbert’s formulation is therefore affected by the
general problems of impredicativity.

Zermelo’s axiomatization of set theory can thus be read as an answer to
two different paradoxes. His strategy was to avoid unrestricted comprehen-
sion, leading to Cantor’s paradox (and also to the Zermelo-Russell paradox),
and unrestricted union, leading to Hilbert’s paradox. He easily prevented the
formulation of Hilbert’s paradox by introducing the family set T" in the union
axiom (axiom V). The paradoxes resulting from unrestricted comprehension
were avoided by introducing the separation axiom (axiom III) which ensures
that each set M has at least one subset M, not being element of M [Zermelo
1908b, 264].

In contrast to the addition principle, the mapping principle is “innocent”
of the emergence of Hilbert’s paradox. If we replace the total functions from
M to M by total functions from M to the set {0, 1} we get the set of chara-
teristic functions of all subsets of M. Thus, the mapping principle is closely
related to the power set axiom as it is used in modern set theory. Hilbert
demanded for the mapping principle that the set of all self-mappings is ob-
tained over sets already established, a restriction also valid for the modern
power set axiom.

schiedener Mengen anstreben. Einen Fingerzeig, wie dies zu erfolgen hat, liefert uns die
Bildung der Vereinigungsmenge in der CANTORschen Mengenlehre, wo die sémtlichen Ele-
mente beliebig vieler Mengen zu einer neuen Menge, der Vereinigungsmenge, vereinigt
werden konnen [ ...]. Hinsichtlich der gefahrdrohenden Folgen eines unbekiimmerten Ge-
brauchs des Begriffs ‘beliebig viele’ sind wir freilich, z. B. durch das RUSSELLsche Para-
doxon, hinlanglich gewitzigt; wir gehen daher nicht wie frither von beliebig vielen Mengen
aus, sondern setzen voraus, da} diese Mengen als die Elemente einer bereits als legitim
erkannten Menge séduberlich gegeben sind.”

32This is also the conclusion of Paul Bernays who reported in 1971, obviously referring to
Hilbert’s paradox: “Der Gedanke der Beschrinkung auf solche Mengen, die man, beginnend
mit einer Ausgangsmenge (etwa der Menge der natiirlichen Zahlen) durch Potenzmengen-
bildungen, Vereinigungsprozesse und Aussonderungen bilden kann, wurde—wie ich aus
Erzahlungen von Hilbert weifl—seinerzeit auch erwogen; er fithrte aber zunéchst gerade
zu einer Verschéarfung der Paradoxien, da man die Vereinigungsprozesse nicht geniigend
deutlich normierte, vielmehr die Zusammenfassung der durch die angegebenen Prozesse
gewinnbaren Mengen zu einer Menge ihrerseits als einen zuléssigen Vereinigungsprozefl
ansah” [Bernays 1971/1976, p. 199]. We would like to thank José F. Ruiz, Madrid, for
bringing this quote to our attention.
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4 Conclusion

Hilbert’s paradox is closely related to Cantor’s own paradox. Both Cantor
and Hilbert construct “sets” which lead to contradictions being proved with
the help of Cantor’s diagonalization argument. However, the ways in which
these “sets” are constructed differ essentially. According to Cantor ([Cantor
1883, § 11], cf. [Cantor 1932, pp. 195-197]), there are three principles for
the generation of cardinals. The first principle (“erstes Erzeugungsprinzip”)
concerns the generation of real whole numbers [reale ganze Zahlen, i.e., or-
dinal numbers] by adding a unit to a given, already generated number. The
second principle allows the formation of a new number, if a certain succes-
sion of whole numbers with no greatest number is given. This new number is
imagined as the limit of this succession. Cantor adds a third principle, the in-
hibition or restriction principle (“Hemmungs- oder Beschrankungsprinzip”)
which grants that the second number class has not only a higher cardinality
than the first number class, but exactly the next higher cardinality. Con-
sidering Cantor’s general definition of a set as the comprehension of certain
well-distinguished objects of our intuition or our thinking as a whole ([Cantor
1895/97], [Cantor 1932, p. 282]), one can justly ask whether the sets of all
cardinals, of all ordinals or the universal set of all sets are sets according to
this definition, i. e., whether an unrestricted comprehension is possible. Can-
tor denies this, justifying his opinion with the help of a reductio ad absurdum
argument, but he doesn’t exclude the possibility of forming the paradoxes by
provisions in his formalism.

Hilbert, on the other hand, introduces two alternative set formation prin-
ciples, the addition principle and the mapping principle, but they lead to
paradoxes as well. In avoiding concepts from transfinite arithmetic Hilbert
believes that the purely mathematical nature of his paradox is guaranteed.
For him, this paradox appears to be much more serious for mathematics than
Cantor’s, because it concerns an operation that is part of everyday practice
of working mathematicians.

The significance of Hilbert’s paradox for the history of mathematics should
now be obvious. The paradox shows the importance of the end 19th century
discussion on universal sets and classes, e. g., Cantor’s absolutely infinite to-
talities, Dedekind’s infinite totality of all things which might become objects
of our thinking, and Boole’s universe of discourse. From the beginning the
limitation of size argument played a role (cf. [Hallett 1984]). This discussion
marked a latent foundational crisis in mathematics. The mathematicians in-
volved were dealing with paradoxes, i.e., contradictions that are, they be-
lieved, avoidable. The foundational crisis became manifest in 1903, when
Bertrand Russell and Gottlob Frege published the insight that “Russell’s
paradox” could be derived from Frege’s system of the Grundgesetze. Now
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mathematicians were dealing with antinomies, i.e., intrinsic contradictions
that could not easily be solved. Even this new move was closely connected to
the earlier discussion because Russell found his own paradox while investi-
gating Cantor’s set theory (cf. [Garciadiego Dantan 1992], [Grattan-Guinness
1978], [Grattan-Guinness 2000, pp. 310-315], [Moore 1980, pp. 104-105]).
Hilbert himself had to change his axiomatic programme. Now logic and set
theory moved into the focus of his foundational research (cf. [Peckhaus 1990,
pp. 61-75]).

Appendix I: Hilbert’s Paradox (English Translation)

[Marginal note: 18th lecture, 10 July] [...] |*** In addition, I now come to two
examples of contradictions which are much more convincing, the first, being
of purely mathematical nature, appears to be especially important; when I
found it, I thought in the beginning that it causes invincible problems for set
theory that would lead to the latter’s eventual failure; now I firmly believe,
however, that everything essential can be kept after a revision of the founda-
tions, as always in science up to now. I have not published this contradiction,
but it is known to set theorists, especially to G. Cantor. Anyhow, we regard
finite sets, represented by finitely many numbers, as the operational basis
permitted, and also the countable infinite set 1,2,3... of all natural num-
bers. Furthermore, it seems to be allowed to unite two such sets (1,2,3...)
and (aq,as,as...) into a new conceptual unit (1,2,3...,a1,as,a3...),1.e., a
new set that contains each element of either sets. In the same way, we are
able to unite several sets and even infinitely many into a union. We designate
this as the addition principle, and write |*®® in short for the set obtained from
My, My
Mi+ Mo+ -

These unions are operations, generally applied in logic in even much more
complicated cases without any hesitation. Therefore, it seems to be possible
to apply them here without further ado. Besides this addition principle, we
use a further consideration for forming new sets. Let y = f(z) be a number
theoretic function which maps to every integer value x an integer y; in a
sense immediately to be understood, we can designate such a function as
a mapping [Belegung] of the number sequence to itself, by imagining for
instance a scheme:

z = 1,2,3.4...
y = 2,3,6,9...

The system of all these number theoretic functions f(x), or of all possible
mappings of the number sequence to its own elements, forms a new set “re-
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sulting from the number sequence M by self-mapping,” we write it MM |26

As a principle following from the laws of uniting in ordinary logic and, ac-
cording to it, completely unobjectionable, we can now regard the opinion
that in every case well-defined sets arise from well-defined sets by the self-
mapping operation (mapping principle). For instance, by using this principle,
from the continuum of all real numbers results the set of all real functions.
We want to use only these two principles unobjectionable according to all
previous mathematics and logic.

We start with all finite sets of numbers and the infinite series 1,2,3...
of natural numbers already derived therefrom by addition, and take all sets
resulting from them by applying the operations of addition and self-mapping
an arbitrary number of times; these sets form again a well-defined unit, for
according to the addition principle I unite them all into a sum set &/ which
is well-defined. If I form now the set F = UY of self-mappings of U, this set
arises from the original number sequence via the two operations of addition
and |*°7 self-mapping only; it, therefore, also is one of the sets from whose
addition U just resulted and, therefore, must be a subset of U:

(1) F is contained in U.

[Marginal note: 19th lecture, 11 July] I will now show that this leads to a
contradiction. Let uy, ug, us . .. be the elements of U; then, each element f of
F = U" represents a mapping of U to itself, i.e., in a way a function, that
assigns to each element u; of U another u £6) where it is not at all necessary
that the u;i have to be distinct from one another; we, therefore, represent
this element f most conveniently in schematic form:

f(U1) = Uy, f(u2) = Up2), f(u3) =Upe) .-

Our result (1), that F is contained in U, can now be expressed more exactly
in the following way: we can definitely assign to each single element u; of
U a f; of F so that all f; will thereby be used, maybe even repeatedly, but
that, in any case, to each u; only corresponds exactly one f;; this means,
obviously, nothing else than that there are “not more” elements f; than wu;.
We now consider such an assignment:|?%®

U1|f1;u2|f27u3|f3 s

and from this I will form a new mapping g of U to itself that differs from all
fi, i.e., it is not an element of F because, in our assignment, all elements of
F had to be used up; but since F includes all possible mappings, we have,
thus, derived the contradiction. We again apply the principle of Cantor’s
diagonalization method. In the mapping f;, let the element u; correspond to
the u 1(1):

filur) = wp;



Hilbert’s Paradox 17

if Uy 18 an element different from w ,a), then we construct the new mapping
1

g which assigns u; to it:
g(ur) = U g(1) # Uy

We proceed further according to this principle; by the way, the designation
of elements of & and F by number indices is not essential, and it should by
no means insinuate that these sets are countable which is not at all the case.
If uy is some element of U, a mapping [Belegung] fo |** belongs to it in the
mapping [Abbildung] of f to u; we look for the element fo(us) = u 2 which

it [the mapping f»] assigns to uy, choose uy@ # u e and define a mapping
2
g which assigns it to us:

9(uz) = ugey 7 u e
The mapping g which we obtain in this way has the scheme
g(ur) = ugn) # wp), g(uz) = ugey 7 Uy, g(us) = Uy 7# Uy - .

It is distinct from any mapping fr of F in at least one assignment; namely,
if uy is the element (or one of these) corresponding to f in the mapping
[Abbildung] of F to U, then it follows from the definition of ¢ that:

fi(ug) = Uk g(uk) = ugw # Upih)-

By this, we indeed have the contradiction that the well-defined mapping ¢
cannot be a member of the set of all mappings. We could also formulate this
contradiction so that, according to the last consideration, the set U is always
bigger [note in Hilbert’s hand: “of greater cardinality”| than ¢ but, according
to the former, is an element of &/. This contradiction is not at all yet solved;
anyway, one can see that it must depend upon the fact that the operations of
uniting arbitrary sets or objects into [ new sets or totalities, respectively,
is, nevertheless, not allowed, although it is always used in traditional logic,
and although we have carefully applied it only to natural numbers and sets
arising from them, i.e., to purely mathematical objects.

Appendix II: Hilbert’s Paradox (German Original)

[Marginalie: 18. Vorles. 10. VIL] [...] |*** Ich komme nun noch zu 2 Beispie-
len fiir Widerspriiche, die viel iiberzeugender sind, der erste, der rein ma-
thematischer Natur ist, scheint mir besonders bedeutsam; als ich ihn fand,
glaubte ich zuerst, dafl er der Mengentheorie uniiberwindliche Schwierig-
keiten in den Weg legte, an denen sie scheitern miifite; ich glaube jedoch
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jetzt sicher, dafl wie stets bisher in der Wissenschaft, nach der Revision der
Grundlagen alles Wesentliche erhalten bleiben wird. Ich habe diesen Wi-
derspruch nicht publiciert; er ist aber den Mengentheoretikern, insbeson-
dere G. Cantor, bekannt. Wir sehen die endlichen Mengen, durch endlich
viele Zahlen repréasentiert, jedenfalls als erlaubte Operationsbasis an, und
ebenso die abzahlbar unendliche Menge 1,2,3... aller natiirlichen Zahlen.
Ferner erscheint es erlaubt, 2 solche Mengen (1,2,3...) und (ay,a9,as3...)
zu einer neuen Begriffseinheit (1,2,3...,a1,a9,a;3...), einer neuen Menge,
zusammenzufassen, die jedes Element der beiden Mengen enthalt. Ebenso
konnen wir auch mehrere Mengen und sogar unendlich viele zu einer Vereini-
gungsmenge zusammenfassen. Wir bezeichnen das als Additionsprincip, und
schreiben |?% die so aus Mj, M, ... hervorgehende Menge kurz

Mi+ M+ -

Diese Zusammenfassungen sind Processe, die man in der Logik stets ohne
jedes Bedenken in noch weit komplicierteren Fallen anwendet; es scheint also,
daB man auch hier ohne weiteres davon Gebrauch machen koénnte. Aufler
diesem Additionsprincip verwenden wir noch eine weitere Betrachtung zur
Bildung neuer Mengen. Es sei y = f(x) eine zahlentheoretische Funktion,
die zu jedem ganzzahligen Wert z ein ganzzahliges y zuordnet; in sofort zu
verstehendem Sinne konnen wir eine solche Funktion auch als eine Belegung
der Zahlenreihe mit sich selbst bezeichnen, indem wir etwa an ein Schema
denken:

x = 1,2,3,4...
y = 2,3,6,9...

Das System aller solcher zahlentheoretischen Funktionen f(x) oder aller
moglichen Belegungen der Zahlenreihe mit Elementen ihrer selbst bildet
eine neue Menge, die “durch Selbstbelegung aus der Zahlenreihe M entste-
hende,” wir schreiben sie MM, Als aus den |?° Zusammenfassungsgesetzen
der iiblichen Logik folgendes und nach ihr ganzlich unbedenkliches Princip
kénnen wir nun das ansehen, daf§ aus wohldefinierten Mengen durch Selbstbe-
legung immer wieder wohldefinierte Mengen entstehen. (Belegungsprincip).
Durch dies Princip entsteht aus dem Continuum aller reellen Zahlen bei-
spielsweise die Menge aller reellen Funktionen. Allein mit diesen beiden nach
aller bisherigen Mathematik und Logik unbedenklichen Principen wollen wir
arbeiten.

Wir gehen von allen endlichen Mengen von Zahlen und der aus ihnen be-
reits durch Addition entstehenden unendlichen Reihe 1,2, 3. .. der natiirlichen
Zahlen aus, und fassen alle Mengen auf, die aus ihnen durch die beiden be-
liebig oft anzuwendenden Processe der Addition und Selbstbelegung entste-
hen; diese Mengen bilden wieder eine wohldefinierte Gesammtheit, nach dem
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Additionsprincip vereinige ich sie alle zu einer Summenmenge U, die wohl-
definiert ist. Bilde ich nun die Menge F = U" der Selbstbelegungen von U,
so entsteht diese auch aus der urspriinglichen Zahlenreihe lediglich durch die
beiden Processe der Addition und |**7 Selbstbelegung; sie gehort also auch
zu den Mengen, aus deren Addition erst U entstand, und mufl daher ein Teil
von U sein:

(1) F ist in U enthalten.

[Marginalie: 19. Vorles. 11. VIL.| Ich zeige nun, dass dies zu einem Widers-
pruch fiihrt. Es seien uq,us,us... die Elemente von U; jedes Element f
von F = UY reprisentiert dann eine Belegung von I mit sich selbst, d.h.
eine Funktion gewissermaflen, die jedem Elemente u; von U ein anderes u £0)
zuordnet, wobei die ug.:) keineswegs untereinander verschieden zu sein brau-
chen; wir stellen dies Element f am besten also durch ein Schema dar:

f(ul) = Uy, f(u2) = Ujp2), f<U3) =UpE) - - -

Unser Resultat (1), daB8 F in U enthalten ist, kann man nun néher so ausspre-
chen: Man kann jedem Elemente u; von U eines f; von F eindeutig zuordnen,
so daf} alle f; dabei verwendet werden, eventuell sogar mehrfach, aber immer
jedem wu; nur genau ein f; entspricht; das heifit ja offenbar nichts anderes,
als dafl es “nicht mehr” Elemente f; gibt, als u;. Eine solche Zuordnung
betrachten wir nun: |?°8

u1|f1,U2|f2,U3’f3 cee

und daraus werde ich eine neue Belegung g von U mit sich selbst bilden, die
von allen f; verschieden ist, also gar nicht in F enthalten ware, da ja bei
unserer Zuordnung alle Elemente von F zur Verwendung kommen sollten;
da aber F alle moglichen Belegungen enthélt, so haben wir hier den Wider-
spruch. Wir wenden wieder das Princip des Cantorschen Diagonalverfahrens
an. In der Belegung f; entspreche dem Element u; dasjenige u POk

filun) = wpo;

ist u,) ein von w ) verschiedenes Element, so ordnen wir in der neu zu
1
konstruierenden Belegung ¢ dies dem u; zu:

g(ul) = ug(l) 7& uf1(1).

Nach diesem Princip verfahren wir weiter; die Bezeichnung der Elemente von
U und F durch Zahlenindices ist iibrigens unwesentlich und soll nicht etwa
andeuten, dafl diese Mengen abzihlbar sind, was keineswegs der Fall ist. Ist
uy irgend ein Element von U, so gehort ihm in der Abbildung von f auf u
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|209

eine Belegung f5 zu; wir suchen das Element fo(us) = u das sie dem

(2)
7
uy zuordnet, wihlen wu e # u o) und definieren eine Belegung g, die dies

2

dem uy zuordnet:
g(ug) = Ug(2) # Up2)
2

Die Belegung g, die wir so erhalten, hat das Schema
g(ur) = ug) 7# w0, g(u2) = uge # upe, g(Us) = uge # wpe -

Sie unterscheidet sich von jeder Belegung fi aus F in mindestens einer Zuord-
nung; ist ndmlich uy das in der Abbildung von F auf U dem f; entsprechende
Element (oder eines derselben), so ist nach der Definition von g:

fr(ug) = Uk g(uk) = ugw # Upih)-

Wir haben damit in der Tat den Widerspruch, dafl die wohldefinierte Be-
legung ¢ nicht in der Menge aller Belegungen enthalten sein konnte. Wir
konnten ihn auch dahin formulieren, dafi gemafl der letzten Betrachtung die
Menge U stets grofer [von Hilberts Hand: von grosserer Machtigkeit] als U
ist, nach der ersten aber in U/ enthalten. Dieser Widerspruch ist noch kei-
neswegs geklart; es ist wohl zu sehen, daf er jedenfalls darauf beruhen muf,
daf} die Operationen des Zusammenfassens irgend welcher Mengen, Dinge zu
|19 neuen Mengen, Allheiten doch unerlaubt ist, obwohl es die traditionelle
Logik doch stets gebraucht, und wir es in vorsichtiger Weise stets nur auf
ganze Zahlen und daraus entstehende Mengen, also auf rein mathematisches
anwandten.
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