Cov­id-19: Kontamin­ierte Ober­flächen als Risiko­fak­t­or

 |  Forschung

Studie der Universität Paderborn erforscht Übertragungsmechanismen

Die anhaltende COVID-19-Pandemie stellt weltweit eine Bedrohung für die Gesundheit von Millionen von Menschen dar. Atemwegsviren, zu denen der Erreger SARS-CoV-2 zählt, können sowohl über die Luft als auch durch den Kontakt mit kontaminierten Gegenständen übertragen werden. Wissenschaftler vom Lehrstuhl für Technische und Makromolekulare Chemie der Universität Paderborn haben deshalb untersucht, was die Anhaftung von Viren an Oberflächen begünstigt. Dafür erforschten sie die Proteine der Virushülle. Die Ergebnisse könnten einen wichtigen Beitrag zur Bekämpfung von COVID-19 leisten und wurden jetzt in der Fachzeitschrift „Advanced NanoBiomed Research“, einem Journal aus der „Advanced Science“-Reihe, veröffentlicht.

„Es ist allgemein bekannt, dass Coronaviren in erster Linie über die Luft übertragen werden. Mehrere Studien haben inzwischen aber auch die Übertragung durch kontaminierte Oberflächen als wichtigen Faktor identifiziert. Es gibt zunehmend Hinweise darauf, dass sie eine Schlüsselrolle bei der Verbreitung von Virusinfektionen spielen können. Bislang ist jedoch wenig über die physikalisch-chemischen Mechanismen der Wechselwirkungen bekannt und darüber, wie diese Interaktionen die Lebensfähigkeit und Infektiosität der Viren beeinflussen“, erklärt Physiker Dr. Adrian Keller, der an der Universität Paderborn die Arbeitsgruppe „Nanobiomaterials“ leitet. Entsprechende Kenntnisse sind laut Keller nicht nur im Hinblick auf die Entwicklung antiviraler Beschichtungen wichtig, sondern auch für die Anpassung von Sterilisations- und Desinfektionsprotokollen, wenn es beispielsweise zu Engpässen bei Schutzkleidung und Desinfektionsmitteln kommt.

Mithilfe der Hochgeschwindigkeits-Rasterkraftmikroskopie können die Forscher die sogenannte Adsorptions-, Diffusions- und Interaktionsdynamik – im Grunde das Bewegungsverhalten – verschiedener Biomoleküle visualisieren. „Konkret geht es um die Adsorption von Viruspartikeln auf abiotischen, also nicht lebendigen Oberflächen. Dabei spielt eine besondere SARS-CoV-2-Proteinuntereinheit eine wichtige Rolle. Sie stellt den äußersten Punkt der charakteristischen Stachelhülle des Erregers dar, man spricht hier auch von Spikes“, erklärt Keller.

Bei den Oberflächen in den Experimenten handelte es sich um Oxid-Einkristalle, die unterschiedliche Keimträger imitieren sollten und in Kontakt mit proteinhaltigen Elektrolyten gebracht wurden. Letztere ähnelten in ihren Eigenschaften menschlichen Schleimhautsekreten. Keller: „Die Elektrolyte dienten dabei als Trägerflüssigkeit für die isolierten Proteine. Ihre Salzkonzentrationen und pH-Werte wurden so eingestellt, dass sie denen von Speichel oder Schleim ähnelten. Die Adsorption der Proteine an den Oberflächen findet aus diesen Medien heraus statt und soll die Situation simulieren, wenn abgehustete virenbeladene Tröpfchen auf Oberflächen landen.“

Eines der zentralen Ergebnisse: Die Adsorption des Spike-Proteins an den Oxidoberflächen wird durch elektrostatische Wechselwirkungen gesteuert. Dazu Keller: „Dies führt unter anderem dazu, dass das Spike-Protein auf Aluminiumoxid weniger stark adsorbiert als auf Titanoxid. Unter gleichen Bedingungen und Inkubationszeiten weist die Titanoxidoberfläche also mehr Proteine auf als die Aluminiumoxidoberfläche. Elektrostatische Wechselwirkungen lassen sich allerdings relativ einfach unterdrücken, z. B. in konzentrierten Salzlösungen. Wir gehen davon aus, dass diese Korrelationen zwischen der Oberfläche und dem Spike-Protein auch bei der initialen Anhaftung kompletter SARS-CoV-2-Viruspartikel an den Oberflächen eine wichtige Rolle spielen. Nach diesem ersten Kontakt könnten jedoch weitere Prozesse, die durch andere Proteine vermittelt werden, an Bedeutung gewinnen.“

Laut Keller bedarf es allerdings noch weiterer Studien: „Um die Hierarchie der beteiligten Wechselwirkungen vollständig aufzuklären, sind Untersuchungen auf molekularer Ebene unter Verwendung verschiedener isolierter Hüllkomponenten sowie kompletter SARS-CoV-2-Viruspartikel notwendig“.

Zur Publikation: https://onlinelibrary.wiley.com/doi/abs/10.1002/anbr.202000024

Nina Reckendorf, Stabsstelle Presse, Kommunikation und Marketing

Grafik (Universität Paderborn, Dr. Adrian Keller): Wissenschaftler der Universität Paderborn untersuchen das Anhaftungsverhalten von Coronaviren auf Oberflächen.

Contact

business-card image

PD Dr. Adrian Keller

Technical Chemistry - Research Group Grundmeier

Group leader "Nanobiomaterials"

Write email +49 5251 60-5722