UPB Bildmarke
Church and religious history
Contact
  • Deutsch
  • English
  • Nachrichten
    • Open Page "Team"
    • Prof. Dr. Nicole Priesching
    • Dr. Julie Adamik
    • Dr. des. Christine Hartig
    • Jan Jeskow
    • Mirjam Kriwet (Sekretariat)
    • Dr. Tilman Moritz
    • Vojin Sasa Vukadinovic
    • Lukas Wapelhorst
    • Open Page "Forschungsprojekte"
      • Open Page "Projekte des Lehrstuhls"
      • Akademisierung von Frauen
      • Aufarbeitung des Nachlasses von Lorenz Kardinal Jaeger
      • Missbrauch im Erzbistum Paderborn – Eine kirchenhistorische Einordnung
      • Missbrauch im Erzbistum Paderborn – Eine kirchenhistorische Einordnung (2002-2022)
        • Open Page "Theologie und Sklaverei von der Antike bis zur Frühen Neuzeit"
        • Veröffentlichungen aus dem Projekt
        • Tagung
        • DFG–Projekt: Theologie und Sklaverei
    • Projekte der Mitarbeiter:innen
    • Katholische Konfessionalisierung in Paderborn?
  • Lehrveranstaltungen
  • Informationen für Studierende
  • Betreute Abschlussarbeiten
  • Partner
  • Anschrift
  1. Faculty of Arts and Humanities
  2. Institute for Catholic Theology
  3. Church and religious history
  4. Nachrichten
Back to the news list

Pro­jekt ver­längert: Wis­senschaftler­*innen er­forschen Meth­oden zur ul­trasta­bi­len Erzeu­gung von Hoch­fre­quen­z­sig­nalen

18.11.2024  |  Forschung,  Pressemitteilung,  MINTS - MLL-basierte Integrierte THz Frequenz-Synthesizer,  SPP 2314 - MLL-basierte Integrierte THz Frequenz-Synthesizers (MINTS),  Heinz Nixdorf Institut - Elektrotechnik,  Fakultät für Elektrotechnik, Informatik und Mathematik

Share post on:

  • Share on Instagram
  • Teilen auf Twitter
  • Teilen auf Facebook
  • Teilen auf Xing
  • Teilen auf LinkedIn
  • Teilen über E-Mail
  • Link kopieren

Eine hochgenaue, ultraschnelle und energieeffiziente Informationsverarbeitung ist in vielen Anwendungen erforderlich, sei es in Kommunikationssystemen, beim Einsatz Künstlicher Intelligenz oder auch bei der Arbeit mit Präzisionsmessgeräten. Die Deutsche Forschungsgemeinschaft (DFG) hat jetzt die Förderung des Projekts „MINTS“ (MLL-basierte Integrierte THz-Frequenz-Synthesizer) um weitere drei Jahre mit einer Fördersumme von rund 415.000 Euro verlängert. In Zusammenarbeit mit dem Fraunhofer Heinrich-Hertz-Institut (HHI) in Berlin erforscht und entwickelt das Projektteam um Prof. Dr. Christoph Scheytt vom Institut für Elektrotechnik und Informationstechnik sowie Leiter der Fachgruppe „Schaltungstechnik“ am Heinz Nixdorf Institut der Universität Paderborn und Prof. Dr. Martin Schell, Leiter des Fraunhofer HHI, Synthesizer, die sehr präzise und stabil Frequenzen im Terahertz-Bereich (THz) erzeugen können. Zur Einordnung: Diese Frequenzen liegen zwischen dem Infrarotlicht und den Mikrowellen.

Effiziente Systeme mit geringem Phasenrauschen

Seit Anfang 2022 widmen sich die Wissenschaftler*innen des Projekts „MINTS“ der Untersuchung von elektronisch-photonischen THz-Frequenzsynthesizer-Architekturen. Ein THz-Frequenzsynthesizer ist im Wesentlichen ein Gerät, das in der Lage ist, sehr präzise und kontrollierbare Signale bei sehr hohen Frequenzen zu erzeugen. „Lange Zeit bestand eine große Herausforderung darin, dass es keine wirksamen Technologien gab, die effizient zwischen dem Infrarot- und dem Mikrowellenbereich arbeiten. Mit den Fortschritten in der Halbleiter- und Lasertechnologie ist die THz-Technologie jedoch viel leichter zugänglich geworden, erklärt Scheytt. So kann THz-Strahlung für bildgebende Verfahren, wie beispielsweise in der Spektroskopie, für die Materialforschung, in der Sicherheitstechnik und in der Wireless-Kommunikation mit sehr hohen Datenraten eingesetzt werden.

Die Wissenschaftler*innen konzentrieren sich nicht nur auf die Erzeugung hoher Frequenzen, sondern arbeiten auch an Stabilität, Präzision und Kontrollierbarkeit. Eine zentrale Herausforderung ist das Phasenrauschen, das Signale sowohl in elektronischen als auch in optischen Geräten beeinflusst und zu schnellen Schwankungen im Signal führt. „Das kann Signale schwächen oder in Kommunikationssystemen zu fehlerhafter Datenübertragung führen“, erklärt Projektpartner Schell. „Unser Ziel ist es, ein geringeres Phasenrauschen als bei rein elektronischen THz-Frequenzsynthesizern zu erreichen und damit eine maximale Signalstabilität zu gewährleisten“, ergänzt Scheytt. Die Verringerung der Anfälligkeit für Phasenrauschen verbessert die Signalqualität und ermöglicht einen effizienteren Betrieb der Systeme, was zu einem geringeren Energieverbrauch führt, und die Entwicklung nachhaltigerer Technologien fördert.

Erste Erfolge und Pläne für die zweite Projektphase

In der ersten Phase des Projekts gelang es den Wissenschaftler*innen unter anderem, den elektro-optischen Phasendetektor, die Kernschaltung des OEPLL-Synthesizers, genau zu modellieren, das additive Phasenrauschen in Silizium-Photonik-Wellenleitern und Antriebsverstärkern zu charakterisieren und das Phasenrauschen von THz-Signalen zu messen. Silizium-Wellenleiter sind grundlegend für die Silizium-Photonik und spielen eine zentrale Rolle bei der optischen Signalübertragung und -verarbeitung auf einem Mikrochip. Die Forschenden verwenden einen elektro-optischen Phasendetektor, um die Phasenverschiebung zwischen einem elektrischen und einem optischen Signal zu messen. Dieses Gerät wird in verschiedenen technischen und wissenschaftlichen Anwendungen eingesetzt, zum Beispiel in der Kommunikationstechnik, wo optische Datenübertragungssysteme kalibriert und überwacht werden müssen, um einen stabilen Betrieb zu gewährleisten.

In der zweiten Projektphase wird das Team auf dem Erfolg der ersten Phase aufbauen und an weiteren Optimierungen arbeiten. „Wir untersuchen einen alternativen diskreten Ansatz zur Erzeugung von THz-Signalen aus MLL und verfolgen gleichzeitig die hybride Integration von THz-OEPLL unter Verwendung eines Silizium-Photonik- (SiPh) oder Indiumphosphid- (InP) PIC-Chips und eines SiGe-THz-Emitter-Chips, um eine miniaturisierte THz-Quelle zu ermöglichen“, sagt Vijayalakshmi Surendranath Shroff, wissenschaftliche Mitarbeiterin am Heinz Nixdorf Institut. Diese Technologien kommen zum Beispiel in modernen Datenzentren, Lidar-Systemen, Quantencomputern und Hochgeschwindigkeits-Telekommunikation zum Einsatz.

Ein Porträtbild der Wissenschaftlerin Vijayalakshmi Shroff
Foto (Universität Paderborn): Vijayalakshmi Shroff ist Mitglied der „MINTS“-Projektgruppe.
Download (176 KB)

Contact

business-card image

Prof. Dr.-Ing. J. Christoph Scheytt

System and Circuit Technology / Heinz Nixdorf Institut

Write email +49 5251 60-6350
More about the person
business-card image

Vijayalakshmi Surendranath Shroff

System and Circuit Technology / Heinz Nixdorf Institut

Write email +49 5251 60-6348
More about the person
business-card image

Meysam Bahmanian

System and Circuit Technology / Heinz Nixdorf Institut

Write email +49 5251 60-6329
More about the person

Church and religious history

Warburger Str. 100
33098 Paderborn
Germany

Universität Paderborn

Warburger Str. 100
33098 Paderborn
Germany

Phone University

+49 5251 60-0
Legal notice
  • Imprint
  • Data privacy
  • Whistleblower system
Social networks