UPB Bildmarke
Church and religious history
Contact
  • Deutsch
  • English
  • Nachrichten
    • Open Page "Team"
    • Prof. Dr. Nicole Priesching
    • Dr. Julie Adamik
    • Dr. des. Christine Hartig
    • Jan Jeskow
    • Mirjam Kriwet (Sekretariat)
    • Dr. Tilman Moritz
    • Vojin Sasa Vukadinovic
    • Lukas Wapelhorst
    • Open Page "Forschungsprojekte"
      • Open Page "Projekte des Lehrstuhls"
      • Akademisierung von Frauen
      • Aufarbeitung des Nachlasses von Lorenz Kardinal Jaeger
      • Missbrauch im Erzbistum Paderborn – Eine kirchenhistorische Einordnung
      • Missbrauch im Erzbistum Paderborn – Eine kirchenhistorische Einordnung (2002-2022)
        • Open Page "Theologie und Sklaverei von der Antike bis zur Frühen Neuzeit"
        • Veröffentlichungen aus dem Projekt
        • Tagung
        • DFG–Projekt: Theologie und Sklaverei
    • Projekte der Mitarbeiter:innen
    • Katholische Konfessionalisierung in Paderborn?
  • Lehrveranstaltungen
  • Informationen für Studierende
  • Betreute Abschlussarbeiten
  • Partner
  • Anschrift
Veröffentlichung in „Quantum Science and Technology“
Veröffentlichung in „Quantum Science and Technology“
Contact
  1. Faculty of Arts and Humanities
  2. Institute for Catholic Theology
  3. Church and religious history
  4. Nachrichten
Back to the news list

Quanten­ex­per­i­mente und Hoch­leis­tung­s­rechnen: Neue Meth­ode er­mög­licht kom­plexe Berech­nun­gen in­ner­halb kürzester Zeit

22.10.2024  |  Forschung,  Optoelektronik und Photonik,  Quantencomputing,  High Performance Computing,  Pressemitteilung,  Institut für Photonische Quantensysteme (PhoQS),  Paderborn Center for Parallel Computing (PC2)

Share post on:

  • Share on Instagram
  • Teilen auf Twitter
  • Teilen auf Facebook
  • Teilen auf Xing
  • Teilen auf LinkedIn
  • Teilen über E-Mail
  • Link kopieren

Veröffentlichung in „Quantum Science and Technology“

Wissenschaftler der Universität Paderborn haben zum ersten Mal Hochleistungsrechnen (HPC, High Performance Computing) zur Analyse eines Quantenphotonikexperiments im großen Maßstab eingesetzt. Konkret ging es um die tomografische Rekonstruktion von experimentellen Daten eines Quantendetektors. Dabei handelt es sich um ein Gerät, das einzelne Photonen, also Lichtteilchen, misst. Dazu haben die Forscher u. a. neue HPC-Software entwickelt. Ihre Ergebnisse wurden jetzt im Fachmagazin „Quantum Science and Technology“ veröffentlicht.

Quantentomographie an einem photonischen Quantendetektor im Megamaßstab

Hochskalierte Photonendetektoren kommen in der Quantenforschung immer häufiger zum Einsatz. Diese Geräte exakt zu charakterisieren, ist von zentraler Bedeutung, um sie effektiv für Messungen nutzen zu können – und bislang eine Herausforderung. Denn damit gehen große Datenmengen einher, die analysiert werden müssen, ohne deren quantenmechanische Struktur zu vernachlässigen. Geeignete Werkzeuge zur Verarbeitung dieser Datensätze sind insbesondere für künftige Anwendungen wichtig. Während klassische Ansätze keine vergleichbaren Berechnungen von Quantensystemen jenseits einer bestimmten Skala zulassen, haben sich die Paderborner Wissenschaftler Hochleistungsrechnen für die Charakterisierungs- und Zertifizierungsaufgaben zunutze gemacht. „Durch die Entwicklung von maßgeschneiderten Open-Source-Algorithmen unter Verwendung von High Performance Computing haben wir eine Quantentomographie an einem photonischen Quantendetektor im Megamaßstab durchgeführt“, erklärt Physiker Timon Schapeler, der das Paper zusammen mit dem Informatiker Dr. Robert Schade sowie Kollegen vom PhoQS (Institut für Photonische Quantensysteme) und dem PC2 (Paderborn Center for Parallel Computing) geschrieben hat. Das PC2, eine interdisziplinäre Forschungseinrichtung der Universität Paderborn, betreibt die HPC-Systeme. Die Hochschule gehört zu den Nationalen Hochleistungsrechenzentren in Deutschland und damit zur Spitze des universitären High Performance Computings.

„Beispielloses Ausmaß“

„Die Ergebnisse eröffnen dem Bereich der skalierbaren Quantenphotonik ganz neue Möglichkeiten, was die Größe der zu analysierenden Systeme angeht. Das hat zum Beispiel auch Auswirkungen auf die Charakterisierung von photonischer Quantencomputer-Hardware“, so Schapeler weiter. Ihre Berechnungen zur Beschreibung eines Photonendetektors haben die Wissenschaftler innerhalb weniger Minuten durchgeführt – schneller als alle anderen zuvor. Auch Berechnungen mit noch größeren Datenmengen hat das System innerhalb kürzester Zeit bewerkstelligt. Schapeler: „Das zeigt, in welch beispiellosem Ausmaß dieses Werkzeug auf quantenphotonische Systeme angewendet werden kann. Soweit wir wissen, ist unsere Arbeit der erste Beitrag auf dem Gebiet des klassischen Hochleistungsrechnens, das experimentelle Quantenphotonik in großem Maßstab ermöglicht. Dieser Bereich wird zunehmend an Bedeutung gewinnen, wenn es darum geht, den Quantenvorteil in quantenphotonischen Experimenten nachzuweisen. Und zwar in Größenordnungen, die mit herkömmlichen Mitteln nicht berechnet werden können.“

Grundlagenforschung zur Gestaltung der Zukunft

Schapeler ist Doktorand in der von Prof. Dr. Tim Bartley geleiteten Arbeitsgruppe „Mesoskopische Quantenoptik“. Darin erforscht das Team die fundamentale Physik der Quantenzustände des Lichts und deren Anwendungen. Diese Zustände bestehen aus mehreren 10, 100 oder 1000 Photonen. „Die Größenordnung ist entscheidend, da sie den grundlegenden Vorteil von Quanten- gegenüber klassischen Systemen verdeutlicht. Der Nutzen ist in vielen Bereichen sichtbar, darunter beispielsweise Messtechnik, Datenverarbeitung und Kommunikation“, erläutert Bartley. Das große Gebiet der Quantenforschung zählt zu den Profilbereichen der Universität Paderborn. Anerkannte Expert*innen betreiben Grundlagenforschung, um durch konkrete Anwendungen die Zukunft zu gestalten.

Der Fachartikel ist online aufrufbar.

Weitere Informationen zur Quantenforschung an der Universität Paderborn gibt es auf unserer Themenseite.

Foto (Universität Paderborn, Hennig/Mazhiqi): Wissenschaftler der Universität Paderborn haben zum ersten Mal Hochleistungsrechnen (rechts im Bild der Paderborner Supercomputer Noctua) zur Analyse eines Quantenphotonikexperiments im großen Maßstab eingesetzt.
Download (5 MB)

Contact

business-card image

Timon Schapeler

Mesoscopic Quantum Optics

Quantum detector tomography of single-photon detectors

Write email +49 5251 60-4593
More about the person
business-card image

Dr. Robert Schade

Paderborn Center for Parallel Computing (PC2)

Scientific Advisor Theoretical Physics/Chemistry

Write email +49 5251 60-1738
More about the person

Church and religious history

Warburger Str. 100
33098 Paderborn
Germany

Universität Paderborn

Warburger Str. 100
33098 Paderborn
Germany

Phone University

+49 5251 60-0
Legal notice
  • Imprint
  • Data privacy
  • Whistleblower system
Social networks